in News Departments > New & Noteworthy
print the content item



Wind energy technology can support and enhance reliability of the U.S. power grid by controlling the active power output being placed onto the system, finds a new study from the National Renewable Energy Laboratory (NREL). The rest of the power system's resources have traditionally been adjusted around wind to support a reliable and efficient system; however, NREL says the research that led to its report challenges that concept.

The national lab conducted the study, "Active Power Controls from Wind Power: Bridging the Gaps," with partners from the Electric Power Research Institute and the University of Colorado.

The report also finds that it often could be economically beneficial to provide active power control, and potentially damaging loads on turbines from providing this control is negligible. NREL says active power control helps balance load with generation at various times, avoiding erroneous power flows, involuntary load shedding, machine damage and the risk of potential blackouts.

“Utilities and independent system operators are all seeking strategies to better integrate wind and other variable generation into their electric systems,” says NREL Analyst Erik Ela. “Few have considered using wind power to support power system reliability.”

The study included a number of different power system simulations, control simulations, and field tests using turbines at NREL’s National Wind Technology Center (NWTC). The lab says the study developed proposals for new ancillary services designs in U.S. wholesale electricity markets, studied how wind power affects system frequency in the western U.S. with and without active power control, and tested the use of active power control at the NWTC to better understand the performance and structural impacts on wind turbines when providing active power control to the electric system.

“Although many of the control strategies have been proven technically feasible and are used in many regions of the world, only a limited number of wind turbines in the United States are currently providing active power control,” Ela explains. “The reason is that the stakeholders - system operators, manufacturers, regulators and the plant owners - all have different goals and perspectives.”

According to NREL, wind is one of the fastest-growing sources of power generation - supplying up to 20% of electricity in many areas of the world. In some regions of the U.S., wind sometimes provides more than 50% of the electric power. However, NREL says the challenge with integrating high concentrations of wind power into electric systems is that it is a variable, uncertain resource, commonly considered “non-dispatchable.”

The forms of active power control considered in this study are synthetic inertial control, primary frequency control, and automatic generation control regulation. For wind power to provide active power control services, NREL says three things must happen:

1)  The wind power response needs to improve power system reliability, not impair it.

2) It must be economically viable for wind power plants as well as electricity consumers. Because power plants may incur additional capital costs for the controls and reduce the amount of energy it sells to the market, there must be an incentive to provide the service.

3) Active power control should not have negative impacts on the turbine loading or induce structural damage that could reduce the life of the turbine.

NREL says the comprehensive study analyzed timeframes ranging from milliseconds to the lifetime of wind turbines, spatial scopes ranging from turbine components to entire regions, and study types ranging from economics to power systems engineering, to control design.

“The study’s key takeaway is that wind power can act in an equal or superior manner to conventional generation when providing active power control, supporting the system frequency response and improving reliability,” Ela concludes.

The full report is available here.



Trachte Inc._id1770
Latest Top Stories

Utility-Scale Wind And Solar Keep Getting Cheaper

A new study measures the levelized cost of energy from various technologies and suggests that the costs of utility-scale wind and solar power are catching up with those of traditional sources, even without subsidies.


The Song Remains The Same: Ontario Seeks More Science Before Lifting Offshore Ban

The Ontario government says the nearly four-year-old offshore wind moratorium will remain in place until the province fully understands the technology’s impact on the environment.


Why States Should Adopt A Renewable Portfolio Standard

A new study analyzes the potential benefits of state renewable energy mandates, as well as recommends what such policies should include.


Sen. Reid Vows To Bring Wind PTC To A Vote By Year's End

Nevada's senior senator provides some encouragement to wind industry advocates during his annual Clean Energy Summit.


Steadily, Wind Turbine OEMs Resume R&D Investment

An increased commitment to research and development will likely lead to wind energy innovation - not to mention a likely increase in patent-protected technology.

Renewable NRG_id1934
Canwea_id1984
UnitedEquip_id1995
Future Energy_id2008